Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Электрические машины

Направление подготовки	11.03.04 Электроника и наноэлектроника
Направленность (профиль) образовательной программы	Промышленная электроника
Квалификация выпускника	бакалавр
Год начала подготовки (по учебному плану)	2019
Форма обучения	заочная
Технология обучения	традиционная

Курс	Семестр	Трудоемкость, з.е.
3	5	3

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачет с оценкой	ЭМ

Разработчик рабочей программы	А.В.Янченко
Доцент кафедры ЭМ, канд. техн. наук, доцент	« <u>29</u> » <u>04</u> 20 <u>/9</u> г.
СОГЛАСОВАНО	
Директор библиотеки	<u>И.А.</u> Романовская «29» 04 20 <u>/9</u> т.
Заведующий кафедрой « <u>ЭМ</u> »	<i>А.В.</i> Сериков «23» 04 20/9г.
Заведующий кафедрой « <u>ПЭ</u> »	Д.А. Киба « <u>29</u> » <u>04</u> 20/9г.
Декан ЭТФ	—————————————————————————————————————
Начальник учебно-методического управления	# E.E. Поздеева 20/9 г.

1 Общие положения

Рабочая программа дисциплины «Электрические машины» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 927 от 19.09.2017, и основной профессиональной образовательной программы подготовки «Промышленная электроника» по направлению11.03.04" Электроника и наноэлектроника».

Практическая подготовка реализуется на основе: профессионального .стандарт: Код 29.007 «Специалист по проектированию микро- и наноразмерных электромеханических систем», Утвержден приказом Министерства труда и социальной защиты Российской Федерации от 15 сентября 2016 г. N 521н.

Задачи	Научить понимать физические явления, происходящие в электрических маши-		
дисциплины	нах и трансформаторах в различных режимах работы.		
	Дать знания обучающимся по техническим параметрам, характеристикам и		
	особенностям различных видов электрических машин.		
	Научить обучающихся подбирать по справочным материалам электрические		
	машины для заданных условий эксплуатации.		
Основные	1. Машины постоянного тока.		
разделы / темы	2. Трансформаторы.		
дисциплины	3. Машины переменного тока.		

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Электрические машины» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код по ФГОС	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	Профессиональные	
ПК-1 Способен выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального назначения в соответствии с техническим заданием с использованием средств автоматизации проектирования	ПК-1.1 Знает принципы конструирования отдельных аналоговых блоков электронных приборов ПК-1.2 Умеет проводить оценочные расчеты характеристик электронных приборов ПК-1.3 Владеет навыками подготовки принципиальных и монтажных электрических схем	Знать принципы конструирования отдельных видов электрических машин и трансформаторов Уметь проводить оценочные расчеты характеристик электрических машин и трансформаторов Владеть навыками подготовки принципиальных и монтажных электрических схем с электрическими машинами и трансформаторами

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Электрические машины» изучается на 3 курсе(ах) в 5семестре(ах). Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к части, формируемой участниками образовательных отношений.

Знания, умения и навыки, сформированные при изучении дисциплины «Электрические машины», будут востребованы при изучении последующих дисциплин:Учебная практика (ознакомительная практика), 3 курс, рассредоточенная; Производственная практика (технологическая (проектно-технологическая) практика), 3 курс; Микросхемотехника аналоговых и цифровых устройств; Импульсные устройства // Релаксационные процессы в электронных устройствах; Методы анализа и расчет электронных схем // Численные методы; Моделирование электронных схем; Системы обработки и кодирования информации; Источники вторичного электропитания; Производственная практика (преддипломная практика). Входной контроль дисциплины не проводится.

Дисциплина «Электрические машины» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем выполнения лабораторных работ.

Дисциплина «Электрические машины» в рамках воспитательной работы направлена на формирование у обучающихся умения аргументировать, самостоятельно мыслить, развивает творчество, профессиональные умения.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 3 з.е., 108 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академи- ческих часов
Общая трудоемкость дисциплины	108
Контактная аудиторнаяработа обучающихся с преподавателем (по видам учебных занятий), всего	10
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, преду- сматривающие преимущественную передачу учебной информации пе- дагогическими работниками)	4
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	6
в том числе в форме практической подготовки	4
Самостоятельная работа обучающихся иконтактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде	94
вуза	77
Промежуточная аттестация обучающихся—Зачет с оценкой	4

5 Содержание дисциплины (модуля), структурированное по темам(разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

таолица 3 — структура и содержание дисциплин			TI DIATIONS	. 001/10
	Виды учебной работы, включая само-			
	стоятельную работу обучающихся и тр		я и тру-	
	доемкость (в часах)			CDC
		ная работа пр		CPC
Наименование разделов, тем и содержание ма-		с обучающи		
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
Раздел 1 Машины по	стоянного	/		
1 40 / 601 1 1/1 1/1 1/1 1/1 1/1				
m 44 W ×	<u> </u>			
Тема 1.1 Устройство машин постоянного тока				
(МПТ). Принцип действия МПТ в режиме ге-				
нератора и двигателя. Конструкция и функции	2			
коллектора. Магнитная и электрическая цепь	_			
МПТ. Формулы момента и электродвижущей				
силы МПТ.				
Виды обмоток машин постоянного тока и ус-				
ловия применения.				6
Реакция якоря, ее виды, воздействие на МПТ.				
Коммутация и ее виды. Способы улучшения				4
				7
коммутации. КПД и потери в МПТ.				
Построение петлевых обмоток МПТ.				4
TIOCIPOCHIC IICIJICBBIX OOMOTOK WITT.				+
Генераторы постоянного тока (ГПТ). Схемы воз-				4
буждения ГПТ. Характеристики ГПТ.				4
Исследования характеристик генераторов посто-				
янного тока.			2	
Двигатели постоянного тока (ДПТ). Пуск ДПТ.				_
Характеристики ДПТ. Режимы торможения ДПТ.				6
Регулирование частоты вращения ДПТ.	<u> </u>			
Раздел 2 <i>Трансф</i>	оорматоры	ļ		
Torra 2.1 Trovach D. V.			-	
Тема 2.1 Трансформаторы. Виды. Устройство				
масляного трансформатора. Основные пара-				
метры и соотношения. Работа в режиме холо-				
стого хода.				
Изучение конструкции магнитопроводов и обмо-				6
ток силовых трансформаторов.				U
Работа трансформатора под нагрузкой. Уравнения				O
токов и ЭДС. Схема замещения трансформатора.				8
Изучение параметров схемы замещения трансфор-				
матора в режимах холостого хода и короткого за-				8
латора в роминам полостого пода и пороткого за	<u> </u>			

		небной работ ную работу о доемкость	бучающихс	
	Контактная работа преподава-			CPC
Наименование разделов, тем и содержание ма-		с обучающи		
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
NA MONING		занятия)		
мыкания.				
Изменение выходного напряжения трансформатора под нагрузкой. Векторная диаграмма трансформатора под нагрузкой.				8
Построение векторной диаграммы трансформатора при активно-индуктивной нагрузке.				4
Потери и КПД трансформатора. Схемы включения обмоток трехфазных трансформаторов. Процессы намагничивания.				8
Параллельная работа трансформаторов. Переходные процессы в трансформаторах.				4
Опытное определение параметров схемы замещения трансформатора.			2*	
Раздел 3 Машины пер	ременного п	пока		
Тема 3.1 Асинхронные машины (АМ). Виды. Устройство. Принципы получения вращающегося поля статора Понятие скольжения ротора. Режимы работы. Виды синхронных машин	1			
Расчет магнитной цепи генератора постоянного тока.				2
Уравнения напряжений и тока АМ. Схема замеще-				
ния АМ. Уравнение моментов. Характеристики АМ в режиме двигателя и генератора.				2
Исследование рабочих характеристик асинхронного двигателя (АД) с короткозамкнутым ротором.			2*	
Построение внешних характеристик ГПТ.				4
Энергетическая диаграмма, потери и КПД АД. Векторная диаграмма				4
Процессы пуска АД. Способы пуска АД. АД с				
улучшенными пусковыми свойствами. Асинхронный преобразователь частоты (АПЧ).				6
Синхронные машины (СМ), виды, устройство, принцип действия синхронного генератора (СГ). Параметры СМ. Уравнение напряжений СМ. Реакция якоря в СГ.				4
Уравнения мощности и момента СМ. Характеристики СГ.				4

	Виды учебной работы, включая само-			
	стоятельную работу обучающихся и тру-			
		доемкость	(в часах)	
	Контакти	ная работа пр	еподава-	CPC
Наименование разделов, тем и содержание ма-	теля	с обучающи	мися	
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
Угловая характеристика и устойчивость работы				
СМ. V-образные характеристики СМ. Синхрон-				4
ные компенсаторы.				
ИТОГО	4		6	94
по дисциплине	7		U) -1

^{*-} реализуется в форме практической подготовки

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	46
Подготовка к лабораторным занятиям	12
Подготовка и оформление расчетно-графической работы	36
	94

7 Оценочные средства для проведения текущего контроля ипромежуточной аттестации обучающихся по дисциплине (модулю)

Таблица 5 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства	Показатели оценки
Разделы 1-3	ПК-1	Тест	Правильность выполнения теста
Разделы 1-3	ПК-1	Лабораторные работы	Аргументированность ответов
Разделы 1-3	ПК-1	РГР	Полнота и правильность выполнения РГР

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 6).

	Наименова- ние оценочного средства	Сроки выпол- нения	Шкалао- ценива- ния	Критерии оценивания						
	5 семестр									
	Промежуточная аттестация в форме зачета с оценкой									
1	Тест	в течение сессии	5баллов	5 баллов — 91-100 % правильных ответов — высокий уровень знаний; 4 балла — 71-90 % правильных ответов — достаточно высокий уровень знаний; 3 балла— 61-70 % правильных ответов — средний уровень знаний; 2 балла — 51-60 % правильных ответов — низкий уровень знаний; 1 баллов — 0-50 % правильных ответов —						
1	Лабораторная работа 1	в течение сессии	5баллов	очень низкий уровень знаний. 5 баллов – студент показал отличные навыки применения полученных знаний и						
2	Лабораторная работа 2 Лабораторная	в течение сессии в течение	5баллов 5баллов	умений при решении профессиональных задач в рамках усвоенного учебного мате-						
14	работа 3 Выполнение РГР	в течение семестра	5баллов	риала. 4 балла – студент показал хорошие навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 3 балла – студент показал удовлетворительное владение навыками применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 2 балла –студент продемонстрировал недостаточный уровень владения умениями и навыками при решении профессиональных задач в рамках усвоенного учебного материала.						
ИТОГО:			25 баллов	•						

Критерии оценки результатов обучения по дисциплине:

- 0 64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый, минимальный уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85 100 % от максимально возможной суммы баллов «отлично» (высокий, максимальный уровень)

адания для текущего контроля

TECT

Какой закон определяет величину и направление ЭДС впроводнике, движущемся в магнитном поле?

- а. закон Кулона б. закон Ампера;
- в. закон электромагнитной индукции;
- г. закон полного тока; д. закон Кирхгофа.

Какой закон определяет величину и направление силы, действующей на проводник с током в магнитном поле?

- а. закон Кулона б. закон Ампера;
- в. закон электромагнитной индукции;
- г. закон полного тока; д. закон Кирхгофа.

Какое правило определяет направление ЭДС в проводнике, который движется в постоянном магнитном поле?

а. правило «левой руки»; б. правило «правой руки»; в. правило «буравчика».

Какое правило определяет направление действия силы Ампера на проводник с током в магнитном поле?

а. правило «левой руки»; б. правило «правой руки»; в. правило «буравчика».

Какое правило определяет направление магнитного поля вокруг проводника с током?

а. правило «левой руки»; б. правило «правой руки»; в. правило «буравчика».

В какой обмотке машины постоянного тока протекает переменный ток?

- а. в обмотке главных полюсов;
- б. в обмотке добавочных полюсов;
- в. в обмотке якоря;
- г. в компенсационной обмотке

Как изменится частота вращения у двигателей постоянного тока независимого возбуждения при понижении нагрузки на валу?

а. частота вращения понизится; б. повысится; в. не изменится.

Как изменится частота вращения у двигателей последовательного возбуждения при понижении нагрузки на валу?

а. частота вращения понизится; б. повысится; в. не изменится.

Какую мощность трансформатора можно определить из опыта холостого хо- ∂a^2

- а. мощность потерь в меди обмоток;
- б. мощность потерь в магнитопроводе;
- в. мощность добавочных потерь;

Какую мощность трансформатора можно определить из опыта короткого замыкания?

- а. мощность потерь в меди обмоток;
- б. мощность потерь в магнитопроводе;
- в. мощность реактивных потерь;

Возрастут ли в трансформаторе потери на гистерезис, если магнитопровод из листов электротехнической стали толщиной 0,35 мм заменить на магнитопровод из стали той же марки, но толщиной 0,5 мм?

- а. Конечно, возрастут;
- б. От этого потери на гистерезис не зависят;

Выбрать произведение параметров трансформатора, соответствующее м.д.с. его обмотки?

а. Імб. U_1I_1 в. U_2I_2 г. wUд. w_1E_1

Чему равна сумма потерь асинхронного двигателя при КПД $\eta=0.9$, если он потребляет мощность $P=100~\kappa Bm?$

а. 1000 Вт; б. 200 Вт; в. 500 Вт; г. 10000 Вт; д.2000 Вт.

В каких пределах изменяется скольжение АМ в режиме генератора?

а. от $-\infty$ до 0 б. от 0 до 1 в. от 0 до $+\infty$ г. от 1 до $+\infty$ д. от 1 до 2.

Какая частота тока будет в роторе AM, если известны следующие ее параметры: $f_1 = 50 \, \Gamma \mu$, 2p = 6, s = 0.01?

а. 250 Гц; б. 5 Гц; в. 100 Гц; г. 0,5Гц; д. 500Гц;

На значение каких потерь асинхронного двигателя отличается его мощность на валу – от электромагнитной?

- а. на значение электрических, магнитных и добавочных потерь на статоре;
- б. на значение электрических, магнитных и механических потерь на роторе;
- в. на значение механических и добавочных потерь в обмотках.

Во сколько раз возрастает частота вращающегося магнитного поля статора АД, если частота переменного тока увеличится в 8 раз?

а. в 4 раза; б. в 8 раз; в. в 2 раза; г. в 16 раз.

Как опытным путём определить постоянные потери асинхронного двигателя?

- а. провести опыт холостого хода;
- б. провести опыт к.з.;

В каком случае частота тока ротора асинхронного двигателя будет больше: при неподвижном роторе или при вращающемся роторе?

- а. при неподвижном роторе
- б. при вращающемся роторе

В каких пределах изменяется скольжение AM в режиме электромагнитного тормоза?

а. от $-\infty$ до 0 б. от 0 до 1 в. от 0 до $+\infty$ г. от 1 до $+\infty$ д. от 1 до 2.

Определить частоту тока в роторе специальной асинхронной машины, если известны следующие параметры: $f_1 = 500 \, \Gamma \mu$, 2p = 10, s = 2?

а. 250 Гц; б. 5 Гц; в. 100 Гц; г. 1000Гц; д. 5000Гц;

В каком случае частота тока ротора подключенного к сети асинхронного двигателя будет больше?

а. при неподвижном роторе б. при вращающемся роторе

Число пар полюсов синхронного генератора p=6. Определить частоту вращения магнитного поля статора, если частота тока f=50 Γ μ .

а. 1000; б. 750; в. 500; г. 1500.

В какой обмотке синхронной машины протекает постоянный ток?

- а. в обмотке якоря;
- б. в обмотке возбуждения;
- в. в демпферной обмотке;
- г. в компенсационной обмотке.

Защита лабораторных работ

Лабораторная работа №1. Исследования характеристик генераторов постоянного тока.

- 1. Назовите основные части ГПТ и устно опишите их назначение.
- 2.В чем заключается принцип обратимости электрической машины?
- 3. Как можно регулировать напряжение на зажимах генератора?
- 4. Что такое реакция якоря и как она влияет на работу генератора
- 5. Чем отличаются последовательная и параллельная обмотки возбуждения?
- 6. Почему в момент пуска двигателя возникает большой ток?
- 7. Какие способы регулирования частоты вращения двигателя смешанного возбуждения возможны? Сравнить экономичность способов.
 - 8. Для чего служит компенсационная обмотка?
- 9. Какая обмотка двигателя смешанного возбуждения имеет большее число витков параллельная или последовательная?
- 10. Как повлияет на скорость вращения работающего двигателя параллельного возбуждения обрыв в цепи возбуждения?

Лабораторная работа №2. Опытное определение параметров схемы замещения трансформатора.

- 1. Пояснить принцип действия трансформатора(ТР)?
- 2. Какие виды трансформаторов вы знаете?
- 3. Какие функции выполняет трансформаторное масло?
- 4. Чем определяется группа соединений трехфазного трансформатора?
- 5. Сколько групп соединений теоретически возможно для трехфазных и однофазных ТР? Какие группы соединений используют на практике?
- 6.Перечислите условия проведения опыта холостого хода трехфазного трансформатора и нарисуйте электрическую схему проведения опыта.
- 7. Нарисуйте схему замещения трансформатора в режиме холостого хода и покажите, как рассчитать ее параметры по опытным данным.
- 8.Перечислите условия проведения опыта короткого замыкания и нарисуйте электрическую схему проведения опыта.
- 9. Нарисуйте схему замещения трансформатора в режиме короткого замыкания и покажите, как рассчитать ее параметры по опытным данным.
 - 10. Объясните, что называется напряжением короткого замыкания трансформатора.

Лабораторная работа №3. Исследование рабочих характеристик асинхронного двигателя с короткозамкнутым ротором

- 1. В чём состоит принцип действия трёхфазного АД?
 - 2. Какие виды АД вы знаете?
 - 3. Как влияет изменение напряжения сети на вращающий момент АД?

- 4. Как можно определить критическое скольжение АД?
- 5. Перечислите способы регулирования частоты вращения АД?

Расчетно-графическая работа

Содержание задания на работу: трехфазный асинхронный двигатель с коротко-замкнутым ротором серии 4A питается от сети с линейным напряжением $U_{\rm л}$. Известны следующие параметры двигателя: номинальная мощность $P_{\rm H}$, частота вращения $n_{\rm H}$, коэффициент полезного действия $\eta_{\rm H}$, коэффициент мощности соѕ $\phi_{\rm 1H}$ при номинальной нагрузке, кратность максимального момента $M_{\rm max}$ / $M_{\rm H}$ и кратность пускового тока $I_{\rm n}$ / $I_{\rm H}$. Фазное номинальное напряжение обмотки статора $U_{\rm 1\Phi}$ = 220 В. Численные значения вышеприведенных параметров для десяти вариантов приводятся в табл. 1.2.

Параметр	Вариант									
	1	2	3	4	5	6	7	8	9	0
U_{π} , B	220	220	380	220	380	220	380	220	380	220
P _н , кВт	0,18	0,55	1,5	0,75	1,1	3	2,2	4	5,5	4
$n_{\scriptscriptstyle H}$,	2760	1370	2850	920	698	945	1419	719	1425	949
об/мин										
ηн, %	66	70	81	69	70	81	80	83	85	82
cosφ _{1H}	0,76	0,70	0,85	0,74	0,68	0,76	0,83	0,70	0,86	0,81
$M_{\text{max}}/M_{\text{H}}$	2,2	2,3	2,2	2,2	1,7	2,2	2,1	2,2	2,3	2,2
I_{Π}/I_{H}	5	4,5	6,5	4	3,5	6	6	6,5	7	6

Таблица 7 - Исходные данные по асинхронным двигателям

Требуется: 1) начертить схему подключения асинхронного двигателя к трехфазной сети; 2) определить способ соединения обмотки статора; 3) определить фазные и линейные токи двигателя; 4) определить число пар полюсов обмотки статора; 5) определить номинальное скольжение и номинальный момент; 6) определить критическое скольжение; 7) определить значение пускового тока; 8) определить значение вращающего момента, развиваемого двигателем при скольженьях: 0,05; 0,1; 0,2; 0,4; 0,6; 0,8;1,0; 9) построить график механической характеристики $n_2(M)$ асинхронного двигателя.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1) Поляков, А. Е. Электрические машины, электропривод и системы интеллектуального управления электротехническими комплексами [Электронный ресурс] / А.Е. Поляков, А.В. Чесноков, Е.М. Филимонова. М.: Форум, ИНФРА-М, 2015. 224 с.// ZNANIUM.COM : электронно-библиотечная система. Режим доступа: http://www.znanium.com/catalog.php?, ограниченный. Загл. с экрана.
- 2) Игнатович, В.М. Электрические машины и трансформаторы: Учебное пособие [Электронный ресурс] / Игнатович В.М., Ройз Ш.С. Томск: Изд-во Томского политех. университета, 2013. 182 с. // ZNANIUM.COM: электронно-библиотечная система. Режим доступа: http://www.znanium.com/catalog.php?, ограниченный. Загл. с экрана.
 - 3) Вольдек А. И. Электрические машины / А.И. Вольдек. Л.: Энергия, 1978.-

8.2 Дополнительная литература

- 1) Кацман М. М. Электрические машины: / М.М. Кацман. М.: Высш. шк., 2003. 470 с.
- 2) Беспалов В.Я. Электрические машины / В.Я. Беспалов, Н.Ф.Котеленец. –М.: Академия, 2010; 2006. –314 с.
- 3) Брускин Д. Э. Электрические машины и микромашины. / Д.Э. Брускин, А.Е. Зорохович, В.С. Хвостов. М.: Альянс, 2016.-528

8.3 Методические указания для студентов по освоению дисциплины

Изучение дисциплины «Электрические машины» осуществляется в процессе аудиторных занятий и самостоятельной работы студента. Аудиторные занятия проводятся в форме лекций и лабораторных. Разделы дисциплин следует изучать последовательно, начиная с первого. Каждый раздел, формирует необходимые условия для создания системного представления о предмете дисциплины.

Самостоятельная работа является наиболее продуктивной формой образовательной и познавательной деятельности студента в период обучения. СРС направлена на углубление и закрепление знаний студента, развитие практических умений. СРС включает следующие виды работ:

- работу с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуальному заданию;
 - опережающую самостоятельную работу;
 - выполнение расчетно-графической работы;
 - изучение тем, вынесенных на самостоятельную проработку;
 - подготовку к мероприятиям текущего контроля.

Студенту необходимо усвоить и запомнить основные термины, понятия и их определения, подходы, концепции и методики.

Контроль самостоятельной работы студентов и качество освоения дисциплины осуществляется во время аудиторных занятий. Для этого, во время лекций используются элементы дискуссии и контрольные вопросы. Уровень освоения умений и навыков проверяется в процессе лабораторных занятий. Для этого используются задания для текущего контроля.

Расчетно-графическая работа

РГР ориентировано на формирование и развитие у обучающихся умений и навыков проектирования и представления результатов их проектной деятельности с учетом и использованием действующих нормативных и методических документов университета.

В ходе выполнения РГР студенты закрепляют теоретические знания, полученные при изучении дисциплины, глубже знакомятся с практическими методами расчета пусковых и механических характеристик асинхронных двигателей. Студенты учатся принимать обоснованные решения путем сравнения вариантов, логических суждений, рассмотрения основных теоретических положений; умению кратко и точно излагать ход анализа.

При выполнении РГР студенты глубже изучают основную и специальную литературу, учатся работать cInternet ресурсами.

Содержание РГР

РГР состоит из пояснительной записки. Пояснительная записка должна содержать: введение, основную часть (этапы анализа со всеми пояснениями), заключение и список использованных источников. Основную часть можно разбить на разделы и подразделы, название которых должно соответствовать их основному содержанию.

Пояснительную записку представляют к защите в сброшюрованном виде. Примерный объем пояснительной записки – не более 10 страниц.

Выполненная пояснительная записка должна удовлетворять нормативным документам университета, с которыми можно ознакомиться в отделе стандартизации или на сайте университета. Отступления от указанных требований могут служить основанием для возврата РГР на исправление.

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1) Электронно-библиотечная система ZNANIUM.COM http://www.znanium.com
- 2) Электронно-библиотечная система IPRbooks http://www.iprbookshop.ru
- 3) Информационно-справочная система «Консультант плюс».

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1) Библиотека РФФИ http://www.rfbr.ru/rffi/ru/library
- 2) Научная электронная библиотека "КиберЛенинка" https://cyberleninka.ru/
- 3) Единое окно доступа к информационным ресурсам http://window.edu.ru/

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 8 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования		
MicrosoftImaginePremium	Лицензионный договор АЭ223 №008/65 от 11.01.2019		
OpenOffice	Свободная лицензия, условия использования по ссылке:		
	https://www.openoffice.org/license.html		

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) — русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- · систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- · развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;

• развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Перед выполнением обучающимися внеаудиторной самостоятельной работы преподаватель может проводить инструктаж по выполнению задания. В инструктаж включается:

- цель и содержание задания;
- сроки выполнения;
- ориентировочный объем работы;
- основные требования к результатам работы и критерии оценки;
- возможные типичные ошибки при выполнении.

Инструктаж проводится преподавателем за счет объема времени, отведенного на изучение дисциплины.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материаламрекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Имже даются источники (в первую очередь вновь изданные в периодической научной литературе)для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- · изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 9 — Перечень оборудования лаборатории

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование		
109/3	Лаборатория электрических	Лабораторные стенды №1 - №16 по трансфор-		
	машин	маторам и ЭМ.		

10.2 Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- · в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- · письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

Лист регистрации изменений к РПД

Номер протокола заседания кафедры, дата утверждения изменения	Количество страниц изменения	Подпись разработчика РПД